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Abstract
In this paper, a variational perturbation scheme for nonrelativistic many-
fermion systems is generalized to a bosonic system. By calculating the free
energy of an anharmonic oscillator model, we investigated this variational
expansion scheme for its efficiency. Using the modified Feynman rules
for the diagrams, we obtained the analytical expression of the free energy up
to the fourth order. Our numerical results at various orders are compared with
the exact and other relevant results.

PACS numbers: 11.15.Bt, 11.10.−z

1. Introduction

For calculating the free energy of a system, there exist usually two basic methods, the conven-
tional perturbative and the variational methods [1]. In fact, these two methods are standard in
calculations of many physics problems. However, it is well known that the former is useful
only for small perturbing potentials, whereas the latter lacks systematic schemes to control
its accuracy, albeit it is valid for any potential. In order to overcome these difficulties and
improve the variational method, a variational perturbation idea of properly combining the two
methods was pioneered by Koehler in lattice dynamics [2] and Seznec and Zinn-Justin [3]
on an anharmonic oscillator decades ago. Later, the idea was extended to path integrals by
Feynman and Kleinert [4] as well as Okopińska [4] and further developed by other authors
[5–7]6. Very recently, three of the present authors and their collaborator (You et al) presented
6 Here we are far from exhausting the relevant literature.
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a variational perturbation scheme for a nonrelativistic many-fermion system in the functional
integral formalism [8]. In order to test the efficiency of the method, You et al [8] provided a
model numerical calculation at zero temperature up to the second order. Obviously, this test
is limited and wider investigation is necessary for the variational perturbation scheme.

Actually, the scheme in [8] is a Taylor series expansion based on the variational result ob-
tained in the spirit of the Feynman variational principle [1]. This scheme can improve the varia-
tional method if used judicially. We note that there exists no work performing the same scheme
for bosonic systems. Although Okopińska [9] and Krzyweck [6] established two kinds of ex-
pansion schemes, the optimized expansions and the cumulant expansions respectively, whose
lowest order results are the variational results, they are really not based on the variational results
because the variational procedure was performed at the truncated order. Further, improvement
to the variational method is notoriously difficult and different schemes will have their own
advantages over others. So it is worthwhile generalizing the scheme in [8] to bosonic systems.

For the above two purposes, an anharmonic oscillator will be an effective laboratory. For
a one-dimensional anharmonic oscillator, the Hamiltonian is

H(t) = 1

2m
p2 +

1

2
mω2x2(t) + λx4(t). (1)

Here, x is the space position, p the momentum, t the time and m, ω and λ are the mass,
frequency and coupling strength, respectively. Such an anharmonic oscillator is probably the
simplest model which does not have an exact analytic solution. Its exact free energy was
obtained numerically [6, 10]. Moreover, there exist many approximation methods to calculate
its free energy [4, 6, 9, 11]. All of these make equation (1) an ideal candidate for our purpose.
Therefore, in this paper, we will generalize the scheme in [8], taking the simple anharmonic
oscillator (equation (1)) as a laboratory and investigate the Taylor expansion scheme on the
free energy based on the variational result obtained from the Feynman variational principle [1].

Simultaneously, the anharmonic oscillator itself is useful in chemical physics [12]
and many physics problems, such as thermal expansion, phonon softening and structural
phase transitions [13]. Although its free energy was calculated using many methods, their
numerical (approximate and exact) results7 were focused mainly on the case of the reduced
temperature T less than 1, except for [10] which provided accurate results for a moderate T.
Therefore, we also test whether our scheme can produce reliable results for a moderate
temperature range.

We will work within the functional integral formalism [14]. The next section generalizes
the scheme in [8] to calculate the free energy of a system with potential V (x). In section 3,
we carry out the scheme on the anharmonic oscillator (equation (1)). Section 4 presents
calculations of the free energy for equation (1) up to the fourth order and makes comparisons
with the exact and various approximate results, such as variational, cumulant-expansion and
optimized-expansion results. Conclusions are given in section 5.

2. A variational expansion of free energies for bosonic systems

For a system with the Hamiltonian H(t) = 1
2mp

2 + V [x(t)] with V [x(t)] = 1
2mω

2x2(t) +
VI [x(t)], the generating functional is [14]

Z[J ] =
∫
x(0)=x(β)

D[x(τ)] exp

{
−
∫ β

0

[
1
2mx(τ)

(−∂2
τ

)
x(τ) + V [x(τ)] − J (τ)x(τ )] dτ

}
(2)

7 In this paper, an anharmonic oscillator does not include the double-well potential case.
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where τ = it is the imaginary time, ∂τ ≡ ∂
∂τ
, β = 1

κT
with κ the Boltzmann constant (we will

consider it as unity for convenience)and T the temperature. J is an arbitrary external source and
the symbol D[x(τ)] represents the functional measure. In equation (2), x(0) = x(β) means
that the functional integral should be executed over all the closed paths [14]. To introduce a
variational parameter �, one can rewrite the classical action functional S[x] in the Euclidean
spacetime in equation (2) as [3, 6, 9]

S[x, J ] =
∫ β

0

[
1
2mx(τ)

(−∂2
τ +�2

)
x(τ)− J (τ)x(τ )− 1

2m�
2x2(τ ) + V [x(τ)]

]
dτ

≡ S0[x, J ] + SD[x] (3)

with S0[x, J ] =∫ β
0

[
1
2mx(τ)

(−∂2
τ +�2

)
x(τ)−J (τ)x(τ )] dτ and SD[x] =∫ β

0

[−1
2m�

2x2(τ )+
V [x(τ)]

]
dτ . Thus, Z[J ] can be rewritten as

Z[J ] =
∫
x(0)=x(β)

D[x(τ)] exp{−S0[x, J ] − SD[x]}

= exp

{
−

∫ β

0

[− 1
2m�

2δ2
Jτ

+ V
[
δJτ

]]
dτ

}∫
x(0)=x(β)

D[x(τ)] exp{−S0[x, J ]}

= (Det(G−1))−
1
2 exp

{
−

∫ β

0

[− 1
2m(�

2 − ω2)δ2
Jτ

+VI
[
δJτ

]]
dτ

}
exp

{
1
2JτGττ ′Jτ ′ dτ dτ ′} (4)

where Jτ = J (τ), δJτ ≡ δ
δJτ

, G−1 represents the operator −∂2
τ + �2 with the propagator

Gττ ′ = G(τ, τ ′) and Det means the determinant. In the third step of equation (4), we have
carried out the Gaussian functional integration [14]. Note that Gττ ′ can be expanded into a
series owing to the closed-path requirement in the functional integral, equation (2) [14, 15].
To calculate the free energy, we express the partition function Z ≡ Z[J = 0] in the following
form:

Z =
∫
x(0)=x(β)

D[x(τ)] exp{−S0[x, J = 0]}
∫
x(0)=x(β)D[x(τ)] exp{−S0[x, J = 0] − SD[x]}∫

x(0)=x(β)D[x(τ)] exp{−S0[x, J = 0]}

= (Det(G−1))−
1
2

〈
exp

{
−

∫ β

0

[− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
]

dτ

}〉
G

(5)

= (Det(G−1))−
1
2 exp

{
−

∫ β

0

〈− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
〉
G

dτ

}

×
〈

exp

{
−

∫ β

0

[
− 1

2m(�
2 − ω2)δ2

Jτ
+ VI

[
δJτ

]

− 〈− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
〉
G

]
dτ

}〉
G

. (6)

Here, we have used the following notation and relation

〈O[x]〉G ≡
∫
x(0)=x(β)D[x(τ)]O[x] exp

{
−∫ β

0
1
2mx(τ)

(−∂2
τ +�2

)
x(τ) dτ

}
∫
x(0)=x(β)D[x(τ)] exp

{
−∫ β

0
1
2mx(τ)

(−∂2
τ +�2

)
x(τ) dτ

}

= O[δJ ] exp
{

1
2JτGττ ′Jτ ′ dτ dτ ′}

J=0
≡ 〈O[δJ ]〉G. (7)

Obviously, when VI [x(t)] is not zero, it will be impossible to obtain an analytically exact
partition function and, hence, one has to design some scheme to produce an approximate
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solution. For the case of small VI , one can take �= ω, make a Taylor series expansion to the
exponential in equation (5) and then truncate the series at some order to approximate Z. This
is just the conventional perturbation theory and the propagator Gττ ′ is the bare propagator.
When VI is not so small, the above perturbation method is no longer valid. In such a case,
an effective alternative is the variational method which is based on the Feynman variational
principle. In the following, we briefly introduce the variational method.

Exploiting Jensen’s inequality [1, 8], one can have〈
exp

{
−

∫ β

0

[− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
]

dτ

}〉
G

� exp

{
−

∫ β

0

〈− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
〉
G

dτ

}
. (8)

By substituting the above equation into equation (6) leads to a relation for the lower limit of
the partition function, i.e.,

Z � (Det(G−1))−
1
2 exp

{
−

∫ β

0

〈− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
〉
G

dτ

}
. (9)

Hence, the free energy is

F = − 1

β
ln(Z) � 1

2β
ln(Det(G−1)) +

1

β

∫ β

0

〈− 1
2m(�

2 − ω2)δ2
Jτ

+ VI [δJτ ]
〉
G

dτ ≡ F̄ . (10)

Obviously, making F̄ of the last equation the absolute minimum will lead to a minimum upper
limit of the free energy F0 with the variationally extremized condition,

δF̄

δ�2
= 0 (11)

and the stabilized condition
δ2F̄

(δ�2)2
� 0. (12)

The parameter � which renders F̄ absolutely minimized will be chosen from three
possibilities: the non-zero solution of equation (11), zero and ∞. F̄ with such an� is just F0,
the variational result of F. This procedure is essentially the same as in [16] for equation (1).

Entering the above variational result into equation (6) and taking the logarithm, we obtain
the following expression for F:

F = F0 − 1

β
ln[〈exp{−[SD[δJ ] − 〈SD[δJ ]〉G]}〉G]. (13)

Now, we make a Taylor series expansion of the exponential in the last equation and the average
〈· · ·〉G can be calculated order by order by borrowing the Feynman diagram technique [14]8.
The logarithmic operation in equation (13) is equivalent to discarding disconnected diagrams
[14]. Consequently, we have

F = F0 +
∞∑
2

F (n) (14)

with the nth order correction to the variational result

F (n) = (−1)n+1 1

β

1

n!
〈[SD[δJ ]|τ=τ1 − 〈SD[δJ ]|τ=τ1〉G] · · · [SD[δJ ]|τ=τi − 〈SD[δJ ]|τ=τi 〉G]

· · · [SD[δJ ]|τ=τn − 〈SD[δJ ]|τ=τn〉G]〉G,C. (15)
8 Now the diagrams are no longer bare Feynman diagrams in the sense of perturbation theory owing to� = ω which
has been variationally determined.
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Here, the subscript C means that only the connected diagrams have their contributions to the
free energy [14]. Equation (14) corresponds to a systematic Feynman-diagram-like expansion
and from it, one can estimate the approximate values of the free energy F order by order. Thus,
we have finished the generalization of the scheme in [8] to a bosonic case. In this scheme,
the parameter � is variationally determined before the series expansion is performed and it
is identical for all orders. Obviously, this is a Taylor series expansion around the variational
result and so we call it the variational expansion. Because the ith factor in equation (15)

(i = 1, 2, . . . , n) has the term −〈
SD[δJ ]|τ=τi

〉
G

= − ∫ β
0

〈
− 1

2m�
2δ2
Jτi

+ V
[
δJτi

]〉
G

dτi , which

has a negative sign against the major part of F0, one can expect to get a simplified diagram
rule, as will be shown for the system (equation (1)) in the next section. Next, we apply the
above procedure to the anharmonic oscillator and make a comparison with existing results in
the literature.

3. Application to the anharmonic oscillator

For the system, V [x(t)] = 1
2mω

2x2(t) + λx4(t) (equation (1)), the procedure from equations
(8) to (12) yields easily the variational free energy F0,

F0 = 1

β
ln

(
2 sinh

(
β�

2

))
− 3λ

4m2�2
coth2

(
β�

2

)
(16)

with the variationally extremized condition
(
δF̄
δ�2 = 0

)

�2 = ω2 +
6λ

m2�
coth

(
β�

2

)
. (17)

Here, owing to the periodicity of the path in equation (2),we have used the following propagator

Gττ ′ = 1

β

∞∑
−∞

1

m
(
ω2
n +�2

)e−iωn(τ−τ ′) = 1

2m�

cosh
(
β�

2 −�|τ − τ ′|
)

sinh
(
β�

2

) (18)

with ωn the Matsubara frequency [14, 15]. Equation (16) coupled with equation (17) are just
the variational result of F in [16].

Using the relation 1
2m

2(ω2 −�2) = −6λGττ from equation (17), we have

〈SD[δJ ]〉G =
∫ β

0

〈
1
2m(ω

2 −�2)δ2
Jτ

+ λδ4
Jτ

〉
G

dτ

=
∫ β

0

[
1
2m(ω

2 −�2)Gττ + 3λGττGττ
]

dτ = −
∫ β

0
3λGττGττ dτ. (19)

So, for any i, one has
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〈· · · SD[δJ ]|τ=τi −
〈
SD[δJ ]|τ=τi

〉
G

] · · ·〉
G,C

=
〈
· · ·

∫ β

0

[
1
2m(ω

2 −�2)δ2
Jτi

+ λδ4
Jτi

−
〈
−1

2m(ω
2 −�2)δ2

Jτi
+ λδ4

Jτi

〉
G

dτi · · ·
〉
G,C

=
〈
· · ·

∫ β

0

[
1
2m(ω

2 −�2)
(( ◦
δJτi

)2
+Gτiτi

)
+ λ

(( ◦
δJτi

)4
+ 6Gτiτi

( ◦
δJτi

)2

+ 3GτiτiGτiτi

)
+ 3λGτiτiGτiτi

]
dτi · · ·

〉
G,C

=
〈
· · ·

∫ β

0
[λ

(( ◦
δJτi

)4· · ·
〉
G,C

(20)

where, the symbol ◦ in
◦
δ means that the functional derivative with the index i takes effect on

exp
{

1
2JτGττ ′Jτ ′ dτ dτ ′} only if it makes up a pair with any other functional derivative with

the index j = i to yield Gτiτj . In going to the second step of the last equation, a concrete
analysis has led to the following equivalent properties (⇔ means equivalence):

δ2
Jτi

⇔ ( ◦
δJτi

)2
+Gτiτi δ4

Jτi
⇔ ( ◦

δJτi

)4
+ 6Gτiτi

( ◦
δJτi

)2
+ 3GτiτiGτiτi . (21)

In terms of the Feynman diagram language, it implies that only the legs which come from
different vertices can connect each other.

Substituting equation (20) into equation (14), we can estimate the higher order corrections
to F0 in equation (16) with the help of the diagram technique [14]. The free energy for
equation (1) is now

F = F0 − 1

β

〈
exp

{
−

∫ β

0
λ
( ◦
δJτ

)4
dτ

}〉
G,C

= F0 +
∞∑
2

F (n) (22)

with the nth order correction,

F (n) = (−1)n+1 1

β

λn

n!

〈∫ β

0
dτ1

( ◦
δJτ1

)4 · · ·
∫ β

0
dτn

( ◦
δJτn

)4
〉
G,C

. (23)

Here, the modified Feynman rules for drawing diagrams are quite simple and they are as
follows:

(1) � � Propagator, Gτ1τ2 ; (2)
� �

❅❅
❅❅

�
�� ❅ ❅

❅❅

Vertex, −λ
∫ β
0 dτ .

For the nth order, there is an additional total factor − 1
βn! . From equation (23), it is evident that

there will be no cactus diagrams appearing at any higher order, which is demonstrated by the
diagrams in the next section. This simplifying feature of diagrams is similar to what occurs in
the fermionic case [8]. A further analysis indicates that there exist the following four types of
building bricks for any nth order connected diagrams (n > 2):� �❅❅� �

❅❅ � ❅❅

�
(a)

�
❅❅ � ��

(b)

❅❅� � �
(c)

� � �
(d)

❅❅�

❅❅�

� ❅❅
❅ ❅

��
❅❅� ❅ ❅

�

❅ ❅
�

which correspond to the four kinds of partitionings of the integer ‘4’: (a) 2 + 2, (b) 2 + 1 + 1,
(c) 3 + 1 and (d) 1 + 1 + 1 + 1, respectively. In this figure, the intermediate vertex of the brick
(a) has two legs connected with one vertex and the other two legs with a different vertex, the
left (or right) vertex of the brick (b) has two legs connected with one vertex and the other two
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legs of it connected with two other different vertices respectively, the left (or right) vertex of
the brick (c) has three legs connected with one vertex and the other leg of it connected with a
different vertex and the vertex of the brick (d) will have its legs connected with four different
vertices, respectively. These four bricks are helpful for drawing various distinct diagrams at
any order as one can see from the five diagrams drawn in the next section. For example, none
of them contains the brick (d), the second-order diagram consists of only the brick (a), as does
the first diagram of the fourth-order diagrams (4a).

In the next section, we calculate the free energy up to the fourth order from equation (22).

4. Analytical expressions and numerical results up to the fourth order

According to the last section, the topologically non-equivalent diagrams at the second, third
and fourth orders can be drawn as follows:

�✫✪
✬✩����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ,

2nd 3rd

�
❅❅✫✪
✬✩

❅❅��� ��
� ,

4th (4a)

���
❅❅✫✪
✬✩

�❅❅��

�
��❅❅ �

��
❅❅ ,

4th (4b)

���✫✪
✬✩

���
�

�� �
�� and ✫✪

✬✩

4th (4c)

✬

For these five diagrams from left to right, their symmetry factors (the number of topologically
equivalent diagrams appearing in the expansion) are N2 = 4!, N3 = 3!

3·2 · (
2 · C2

4

)3
,

N4a = 4!
4·2 · (

2 ·C2
4

)4
, N4b = 4!

4 · 2 · (
C2

4 · 2 ·C2
4

)2 · 24 and N4c = 4!
4 · 2 · (

C3
4 · 3! ·C3

4

)2 · 2,
respectively. Thus, one can easily write down the corrections F (2), F (3) and F (4) according to
the above diagrams and then calculate them as

F (2) = − 1

β

λ2

2!
N2

∫ β

0
dτ1 dτ2G

4
τ1τ2

= − 3λ2

64m4�5
sinh−4

(
β�

2

)
[6β� + 8 sinh(β�) + sinh(2β�)] (24)

F (3) = 1

β

λ3

3!
N3

∫ β

0
dτ1 dτ2 dτ3G

2
τ1τ2
G2
τ2τ3
G2
τ3τ1

= 9λ3

512m6�8
sinh−6

(
β�

2

)
{−48 + 32β2�2 + [−3 + 8β2�2] cosh(β�)

+ 48 cosh(2β�) + 3 cosh(3β�) + 108β� sinh(β�)} (25)

and

F (4) = − 1

β

λ4

4!

∫ β

0
dτ1 dτ2 dτ3τ4

{
N4aG

2
τ1τ2
G2
τ2τ3
G2
τ3τ4
G2
τ4τ1

+N4bG
2
τ1τ2
G2
τ3τ4
Gτ2τ3G

2
τ2τ4
Gτ1τ3G

2
τ1τ4

+N4cG
3
τ1τ2
G3
τ3τ4
Gτ2τ3Gτ4τ1

}

= − 3λ4

32 768βm8�12
sinh−8

(
β�

2

)
{6291 − 181 320β2�2 + 25 920β4�4

+ 6[71 + 13 156β2�2 + 2688β4�4] cosh(β�) + 48[−134 + 2115β2�2

+ 6β4�4] cosh(2β�)− 432 cosh(3β�) + 864β2�2 cosh(3β�)

+ 141 cosh(4β�) + 6 cosh(5β�)− 191 394β� sinh(β�)

+ 129 456β3�3 sinh(β�) + 42 568β� sinh(2β�) + 12 672β3�3 sinh(2β�)

+ 37 750β� sinh(3β�) + 1600β� sinh(4β�)}. (26)

These analytical expressions of equations (24)–(26) are the main results in this section. In
order to obtain them, we have had to handle the absolute value symbol in the expression of
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Figure 1. For the case of T < 1 and λ = 1, F2, F3 and F4, the free energies up to the second, the
third and the fourth orders, are compared with the variational result F0 and the exact free energy.

The exact results were calculated according to F = −T ln
[∑

n e−En/T
]

and table V in [6]. Here,

En represents the nth eigenenergy for the system (1). We took m = ω = 1. In this figure, when
T > 0.6, the curve for F3 almost coincides with the curve for F0.

Gττ ′ (see equation (18)). It is straightforward to calculate the integrals in F (2) and F (3) by
dividing the integration domains into 2! and 3! parts, respectively. As for F (n) (n � 4), a multi-
dimensional integration domain which exceeds our direct intuition, is involved. However, for
any n-dimensional integration domain, one can divide it into n! sub-domains so that, for each
sub-domain, the relation τi1 � τi2 � τi3 � · · · � τij · · · � τin−3 � τin−2 � τin−1 � τin holds.
Then, mimicking the calculation of F (3), one can find the following equivalent relation
∫ β

0
dτ1 · · · dτn ⇔

∑
P

∫ β

0
dτin

∫ τin

0
dτi1

∫ τin

τi1

dτi2

∫ τin

τi2

dτi3 · · ·
∫ τin

τin−3

dτin−2

∫ τin

τin−2

dτin−1 (27)

where the letter ‘P’ below the summation symbol means that the summation is carried out
over all the n! sub-domains. Equation (27) allows one to obtain equation (26) with the aid of
the computer software Mathematica.

Using the above results, we can now readily calculate the free energy up to the fourth
order: F2 = F0 + F (2), F3 = F0 + F (2) + F (3) and F4 = F0 + F (2) + F (3) + F (4). In the
following, we will numerically compare them with existing results to examine the reliability
of our scheme.

First, we compare our results with the exact results obtained from [6]. Using
F = −T ln

[∑
n e−En/T ]

(En is the nth eigenenergy of equation (1)), letting m = ω = 1
and for T < 1, one can calculate the exact free energies from table V in [6]. For this case, we
plot figure 1 with λ = 1. In figure 1, the dotted, short-dashed, medium-dashed, long-dashed
and solid curves are the exact free energy Fexa, F0, F2, F3 and F4, respectively. Figure 1
indicates that: (i) when the temperature is near zero, F2 and F3 are very to close to Fexa,
whereas F4 is unbounded from below; (ii) when the temperature is greater than 0.5 or so, F2

and F4 provide substantial corrections to F0 and F4 gives better results than F2 does, while F3

is close to F0. Here, we note that the invalidity of F4 at very low temperature is not unexpected.
Since the present scheme is basically the Taylor expansion of the free energy, the smallness of
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Figure 2. For the case of T > 1 and for several values of z, F4 are compared with F0. We use the
same types of curves to represent F4 and F0 and the latter is always above the former. But for the
cases z = 30 and 50, F4 almost coincides with F0, and for the cases z = 1.0 and 0.2, F4 is much
lower than F0.

Table 1. Our results F2, F3 and F4 are compared with the variational result F0 and the accurate
free energies Faccu provided by Okopińska (z = 10).

T F4 Faccu F0 F2 F3

1 2.262 259 2.262 259 515 64 2.262 452 2.262 2504 2.262 261
2 2.063 913 2.063 915 755 14 2.064 409 2.063 8734 2.063 925
3 1.555 676 1.555 697 188 63 1.556 991 1.555 5342 1.555 747
4 0.780 8495 0.780 936 961 496 0.783 6171 0.780 5129 0.781 1028
5 −0.209 9735 −0.209 722 583 045 −0.205 0294 −0.210 593 −0.209 3154

10 −7.377 75 −7.372 498 233 58 −7.348 171 −7.379 3287 −7.367 283
20 −28.039 25 −27.967 003 646 9 −27.861 47 −28.007 4342 −27.921 05
30 −53.507 69 −53.226 914 316 5 −52.997 67 −53.327 8138 −53.087 86

the temperature prevents and competes with the convergence process of the perturbation and
finally wins over at the fourth order.

Then, we can compare our results with the accurate free energies, Faccu, from Okopińska’s
optimized variational method [10]. In order to compare with Okopińska’s data, we used the
definitions of the dimensionless quantities in [10], that is, m = 1, z = 1

2ω
2λ− 2

3 ,�λ− 1
3 →

�,T λ− 1
3 → T and Fiλ− 1

3 → Fi
9. For the case of z = 10, which corresponds to λ= 0.011 18

in the dimensionlized system of [6], we give the comparison in table 110. From this table, one
can see that F4 has a better agreement with Faccu than F2, F3 and F0 except for T = 30.

Thirdly, to show the improvement of F0 by higher order corrections, for the range of 1 <
T< 50, we plotted the results in figure 2 to compare F4 with F0 in the cases z = 0.2, 1, 10, 30
and 50. In figure 2, we use the same types of curve to represent F4 and F0 and between the
curves of the same type, F4 is always the lower. Also, figure 2 shows that F4 almost coincides
with F0 for z = 30 and 50 and the differences between F0 and F4 are quite large for both z = 1

9 In [10], there is a typo on the rescaling expression of T, and here it is corrected.
10 The data of the accurate free energies were provided by Okopińska, the author of [10].
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Figure 3. Our results F2, F3 and F4 are compared with the the second- and third-order results
by the optimized expansion which were provided by Okopińska (z = 0). In this figure, from
top to bottom (for large values of β), the first, the second, the sixth and the seventh curves are
the variational, the third-, the second- and the fourth-order results of our scheme, respectively. The
third and the fourth curves are the second- and the third-order results of the optimized expansion
respectively, and the fifth curve is the exact result.

Table 2. Our results F2 and F3 are compared with the variational result F0, the first- and third-order
results FKr1 and FKr3 obtained by the cumulant expansions (F2 and F3 in table 2 of [6]) and the
exact free energies Fexa. In this table, m = ω = 1.

λ β F0 FKr1 F3 FKr3 Fexa F2

1.0 5.0 0.812 491 0.811 88 0.807 364 0.803 882 0.803 758 0.800 767
5.0 5.0 1.244 312 1.243 53 1.235 5 1.224 94 1.224 59 1.216 996

50.0 5.0 2.547 58 2.546 75 2.529 673 2.500 67 2.499 71 2.480 384
500.0 10.0 5.425 756 5.425 36 5.387 961 5.322 11 5.319 9 5.276 719

20000.0 3.0 18.501 66 18.500 3 18.373 14 18.144 9 18.137 17.988 22

and z = 0.2. From figure 2, we learn that : (i) for a given temperature, with the increase of
z, i.e., with weakening coupling, the corrections of F4 to F0 get smaller; (ii) for a given z,
with increasing T, the corrections of F4 to F0 become larger; (iii) the quite large differences
between F0 and F4 imply that our scheme becomes invalid with decreasing z or increasing
coupling strength (for a fixed ω2). The third point is similar to the optimized expansion [9].

Finally, taking m = ω = 1, we compare our results with those obtained from the
cumulant expansions [6] in table 2. In table 2, the free energies F2 and F3 are ours, the
free energies FKr1 and FKr3 are the first- and third-order results from the cumulant expansion
in [6] (i.e., F1 and F2 of table 2 in [6]). The temperature in this table is lower than 1 and
the corresponding z is small. So we did not include F4 in the table due to its invalidity.
This table indicates that our F2 and F3 are nearer to the exact value than FKr1 , but not as
good as FKr3 . This reflects that the convergence of our expansion is not as fast as in the
cumulant expansions in [6]. As for the optimized expansions, Okopińska [9] compared the
free energy with the exact results in the case of both ω = 0 (i.e., the smallest z) and reduced
temperature less than 1 and demonstrated a fast convergence. Here, in figure 3, our results
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are compared at various orders with figure 2 in [9]11. In figure 3, from top to bottom (for
large values of β), the first, second, sixth and seventh curves are the variational, the third-,
the second- and the fourth-order results of our scheme, respectively. The third and the
fourth curves are the second- and the third-order results of the optimized expansion, and
the fifth curve is the exact result. The variational result is just the first-order result in the
optimized expansion. From this figure, our third-order result is not so good as the results in
the optimized expansion, and our second-order result is almost as good as the second-order
results in the optimized expansion. This figure simultaniously indicates the invalidity of our
fourth-order result. Thus, the optimized expansion also has a better convergence than our
results. Additionally, the optimized expansion approaches the exact result monotonically
in orders, whereas our results oscillate with orders. However, we want to emphasize that
our scheme is not as complicated as the optimized and cumulant expansions. The crucial
difference between our expansion and the optimized or the cumulant expansions is that our
scheme performs the variational procedure at the lowest order and, accordingly, the parameter
� is identical for all orders, whereas in both the optimized and the cumulant expansions
[6, 9], the variational procedures are performed at their truncated order, and, consequently,�
at one order is different from the next. It is this difference that gives rise to the simplicity and
slow convergence of our scheme and the fast convergence and complication of the optimized
or cumulant expansions.

5. Conclusion and discussion

In this paper, we have generalized the scheme in [8] to a bosonic case and taking the anharmonic
oscillator (equation (1)) as a laboratory,provided a wide test of its efficiency. Our investigations
demonstrate that the present scheme can substantially improve the variational result even
in the second order and when the reduced temperature is greater than 0.5 or so and the
reduced coupling parameter λ is not strong (or z is small), the free energy for equation (1)
up to the fourth order in our expansion gives good agreement with the accurate result. We also
demonstrate that for the free energy of equation (1), when the reduced temperature approachs
zero, or the reduced coupling λ is strong (or z is small), the fourth-order result is invalid.
Thus, from our investigations here, one can see the efficiency and limitations of our scheme.
Here, we also note that the present scheme is much simpler than the optimized and cumulant
expansions, albeit it does not converge as fast as they do. We believe that a simple scheme
is often necessary and useful because the non-perturbative method beyond the Gaussian
approximation is extremely complicated in general. Additionally, we gave the approximate
free energy of the system (equation (1)) for a moderate temperature range. Although the exact
results for the moderate temperature exist in the literature [10], our results can be readily used,
as a basis of quantitative comparison, when some other approximate methods produce the free
energy for the same temperature range.

In general, it should be noted that the variational perturbation theory yields an asymptotic
rather than a convergent series [14], and hence a particular range of validity in a specific
problem has no universality. As for any specific problem, the present scheme should always
be used with a judicial examination of the true physical property. We believe that the present
paper can provide a qualitative reference for an application of our scheme. In particular, when
a specific problem is too complicated to treat beyond the Gaussian approximation with other
expansions, we believe that our scheme can provide a simple and viable tool to treat it.

Finally, we want to point out that, although we only treated the quantum-mechanical
anharmonic oscillator in this paper, it is straightforward to apply our method to
11 The data from the optimized expansions were also provided by Okopińska.
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finite-temperature scalar field theory [15]. Especially, when it is generalized to the φ6 models
[17], we expect the simplicity of the method to still hold there.
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W-FL acknowledges A Okopińska for providing her accurate data and would like to thank
H S Park for his help. This project was supported by the Korea Research Foundation (99-
005-D00011). The work of W-FL was also supported in part by the National Natural Science
Foundation of China under grant no 19875034.

References

[1] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)
Feynman R P 1972 Statistical Mechanics—a Set of Lectures (New York: Addison-Wesley)

[2] Koehler T R 1968 Phys. Rev. 165 942
[3] Seznec R and Zinn-Justin J 1979 J. Math. Phys. 20 1398
[4] Feynman R P and Kleinert H 1986 Phys. Rev. A 34 5080

Kleinert H 1993 Phys. Lett. A 173 332 and the references therein
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(Vlachos K and Okopińska A 1993 Preprint hep-th/9311145)
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